首页> 外文OA文献 >Estimating Signals with Finite Rate of Innovation from Noisy Samples: A Stochastic Algorithm
【2h】

Estimating Signals with Finite Rate of Innovation from Noisy Samples: A Stochastic Algorithm

机译:从噪声样本估算有限创新率的信号:a   随机算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As an example of the recently-introduced concept of rate of innovation,signals that are linear combinations of a finite number of Diracs per unit timecan be acquired by linear filtering followed by uniform sampling. However, inreality, samples are rarely noiseless. In this paper, we introduce a novelstochastic algorithm to reconstruct a signal with finite rate of innovationfrom its noisy samples. Even though variants of this problem has beenapproached previously, satisfactory solutions are only available for certainclasses of sampling kernels, for example kernels which satisfy the Strang-Fixcondition. In this paper, we consider the infinite-support Gaussian kernel,which does not satisfy the Strang-Fix condition. Other classes of kernels canbe employed. Our algorithm is based on Gibbs sampling, a Markov chain MonteCarlo (MCMC) method. Extensive numerical simulations demonstrate the accuracyand robustness of our algorithm.
机译:作为最近引入的创新率概念的一个示例,可以通过线性滤波后再进行均匀采样来获取信号,这些信号是每单位时间有限数量的狄拉克数的线性组合。但是,由于不真实,样品很少无噪音。在本文中,我们介绍了一种新颖的随机算法,可以从噪声样本中重建具有有限创新率的信号。即使以前已经解决了该问题的变体,但令人满意的解决方案仅适用于某些类别的采样内核,例如满足Strang-Fix条件的内核。在本文中,我们考虑了不满足Strang-Fix条件的无限支持高斯核。可以使用其他类别的内核。我们的算法基于马克斯链蒙特卡洛(MCMC)方法吉布斯采样。大量的数值仿真证明了我们算法的准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号